Handwritten Digit Recognition With a Back-Propagation Network

Other Meetings in this Series

Read more

Abstract: Deep learning allows for computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state- of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Read more

Summary: These notes describe the sparse autoencoder learning algorithm, which is one approach to automatically learn features from unlabeled data. In some domains, such as computer vision, this approach is not by itself competitive with the best hand-engineered features, but the features it can learn do turn out to be useful for a range of problems (including ones in audio, text, etc).

Contributing Authors

John Muchovej
John Muchovej

Founder of AI@UCF. Researcher in cognitive science and machine learning. Focusing on intuitive physics and intuitive psychology.